1638

rating

304

debates

66.78%

won

Topic

#2090
# 0.9recurring equals 1.

Status

Finished

All stages have been completed. The voting points distribution and the result are presented below.

With 5 votes and 5 points ahead, the winner is ...

RationalMadman

Parameters

More details
- Publication date
- Last update date
- Category
- Miscellaneous
- Time for argument
- One day
- Voting system
- Open voting
- Voting period
- One week
- Point system
- Winner selection
- Rating mode
- Rated
- Characters per argument
- 1,500

1440

rating

6

debates

0.0%

won

Description

~ 0
/
5,000

No information

Round 1

**Key:**

* multiplied by

/ divided by

r = recurring

others are obvious

**Third Proof**

0.9r / 3 = 0.3r =

*x**x **3 = 3

*x*

3

*x*= 3 * 0.3r = 1**The 10**

*x*-*x*proof*x = 0.9r*

10

*x*= 9.9r10

*x*-*x*= 9*x =*9.9r - 0.9r9.9r - 0.9r = 9

9

*x*/9 = 9/9*x*= 9/9 = 1

The 0.9r never

*because it is inherently endless, the idea being it is endlessly approaching a destination value of 1.0***has a last 9 to reach**What I argue is that it's actually equal to 1.0

A common objection is that, while 0.999... "gets arbitrarily close" to 1, it is never actuallyequalto 1. But what is meant by "gets arbitrarily close"? It's not like the number is moving at all; it is what it is, and it just sits there, looking at you. It doesn't "come" or "go" or "move" or "get close" to anything.

On the other hand, the terms of the associated sequence, 0.9, 0.99, 0.999, 0.9999, ..., do "get arbitrarily close" to 1, in the sense that, for each term in the progression, the difference between that term and 1 gets smaller and smaller. No matter how small you want that difference to be, I can find a term where the difference is even smaller.

**The simplest way to determine if 0.99 repeating is the same as 1 is to subtract.**

__Method 1: Subtraction Rule__

If a-b=0, the numbers are equal

If a-b does not equal to zero, the numbers are not equal.

1-0.99 repeating does not equal zero. The difference is an infinitely small number, but nevertheless, because the difference will never reach zero, 0.99 repeating does not equal one

**Reason 2: 0.99 repeating gets very close, but never equals one.**We can visualize the equation quite easily.

1-0.9=0.1

1-0.09=0.01

1-0.009=0.001

As you can see, this will repeat itself. No matter how many nines you put, there will always be a one at the end. Yes, 0.99 repeating gets very close, but as long as that one at the end of the infinite zeros is there, the 2 numbers will never be equal.

If you want to use me as a win-farm, that's ok. I'm just here to have some fun. Enjoy your pointless wins on this meaningless website.

Round 2

Pro has not even touched on my proofs, both stand true and absolutely proven if you follow the algebra.

**Both of Pro's arguments are the same argument flipped around**Pro is saying that a value of 0.0r with a '1' at the end separates 0.9r and 1 and would separate 0 from the difference between them. The problem with this is how infinite series work, meaning that the '1 at the end' is not even a value capable of being considered mathematically.

Let me put it differently, if something is infinitely approaching a value, this implies that it never stops that approach until it's reached the value. If you deny that it's approaching the value, you also deny that the 0.0r ever can have a 1 at the end of it. In other words, both ways around Con is defeated.

If we deem the numbers to be 'approaching', then we concede that they never ever stop that approach and can't ever stop until the 0.999... hits 1 (theoretically).

Alternatively, if we deem the number static and refuse to perceive 'movement towards' then we also need to understand that the number 0.0recurring with a 1 at the end is impossible to write as a number or mathematically express at all, defeating your static value as being plausible. The infinite 0's cannot ever stop being infinite zeros to then have a 1 at the end, they are infinitely close to 0.

I'm sorry CON is confusing me. My head hurts.

50 gallons of Pepto Bismol later...

If you are saying that 0.99 repeating does not ever stop, then what the fuck is the point of this debate? How can a number equal a number if we cannot even agree on what one of the numbers is.

If the store is out of Pepto Bismol, blame RadiationMadman.

ALSO YOUR WELCOME FOR THE FREE WINS I WANT A THANK YOU OR I WILL STOP DEBATING YOU

I'm in a debate on it now. Ill PM you the reply.

I promise not to reignite a full debate, but curious. You said we abuse the definition of infinity but what definition of infinity are you using?

Also, I won't thank you for the free wins, you accepted them to troll me and had it backfire on you. This was a win-win endeavour for us both where you got what you wanted (or thought you did) and I got what I wanted. In fact this is the first time on the site that you genuinely tried to debate, so it wasn't a free win.

Talk on PM if you want a 'thank you' but I probably won't thank you.

I successfully (if you follow the logic) disproved this resolution five times but lost 3 of the debates, tying 2, as voters were biased and didn't understand what I was saying. This taught me also how the other side masterfully abuses definitions of 'infinite' and 'series' to win the debate.

https://www.debateart.com/debates/1620/0-999-1

this was my best debate of it in terms of how 'to the point' I am.

I really don't care if I lose so whatever. It's not like I care for this site.

I actually don't agree with this but I don't want to help Con. I'll explain after the debate. I am playing devil's advocate here for what I think will be a free win for me.

obvi